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Abstract

We review the critical dynamics of fluids and mixtures. Special attention

in the comparison with experiment is paid to non-asymptotic effects. Our the-

oretical results are based on the complete model H’ of Halperin Hohenberg and

Siggia including the sound mode variables. Using the dynamic renormalization

group theory we calculate the temperature dependence of the transport coeffi-

cients as well as the frequency dependent sound velocity and sound attenuation.

In the mixtures a time ratio between the Onsager coefficients related to the dif-

fusive modes, which is directly related to the critical enhancement of the thermal

conductivity near a consolute point has to be taken into account.

The sound mode contains besides the dynamic parameters a static coupling

related to the logarithmic derivative of the weak diverging specific heat. The

deviation from the asymptotic value of this coupling at finite frequencies and

temperature distance from Tc leads to additional non-asymptotic effects. Our

theory, which derives the phenomenological ansatz of Ferrell and Bhattacharjee

for pure fluids and mixtures near a consolute point, is also applicable near a plait

point.

KEY WORDS: consolute point; dynamic critical phenomena; gas-liquid

critical point; mixtures; plait point; renormalization-group theory; sound atten-

uation; transport properties.
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1. INTRODUCTION

Universality of the dynamics at liquid and mixture second order phase tran-

sitions can be proven by measuring the asymptotic values of exponents and am-

plitude ratios of transport coefficients (TCs) calculated by renormalization group

theory (RGT). In order to extract reliable values for these quantities it is neces-

sary to include corrections to scaling in the analysis of the experimental data (for

a review see [1]). This was interesting in itself since the correction amplitudes

are also related by universal ratios.

However it has become clear that, although the mixtures lie in the same

universality class as the pure fluids, the non-asymptotic corrections are different.

It turned out that in mixtures an additional dynamic parameter (a combination

of Onsager coefficients (OCs)) with an dynamical transient exponent smaller than

that of the pure liquid has to be taken into account [2]. This additional parameter

allows to understand the enhancement of the thermal conductivity, which stays

finite near a consolute point, and which was observed in a 2-butoxyethanol-water

mixture [3].

On the other hand the behavior of the thermal conductivity near a plait point

(vapor-liquid critical point in a mixture) is quantitatively different. In 3He-4He

mixtures the thermal conductivity seems to diverge as in the pure liquid [4] (in

fact it does not reach its finite asymptotic value within the experimental region),

whereas in methane-ethane mixtures the enhancement could be measured [5]

recently. However the enhancement is much larger than at the consolute point.

This could be understood by the different choice of the order parameter at a
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consolute point and the plait point [6].

The description of the crossover from the background region (with regular

nonuniversal behavior) to the asymptotic region (with universal power law be-

havior) requires the calculation of crossover functions which could be checked by

comparison with experiment. Most of such calculations were performed within

mode coupling theory (MCT) [7] (for a review see [8]) Here we present the results

for such crossover functions obtained within RGT and a more complete analysis

of the experimental results [1]. In particular a non-asymptotic RGT of model

H and H’ [9] has been formulated in [2] and compared with experiments at the

vapor-liquid critical point in pure fluids as well as at the consolute point [10] and

at the plait point [6] in mixtures.

Within RGT the non-asymptotic behavior is to understand as a crossover of

the model’s (static or dynamic) coupling parameters from their background to

their fixed point values at Tc. The dependence of the model coupling parameters

is calculated by RGT and inserted in the crossover functions to be considered,

e.g. for the TCs. Such an approach had been developed for the critical dynamics

near the superfluid transition [11] and applies here equally well.

A further application of RGT is the calculation of critical effects in sound

propagation. This is achieved by including the longitudinal dynamical degrees of

freedom into the set of dynamical model equations. Recently we performed such

a calculation near the pure liquid critical point [10, 12], here we consider the more

complicated situation in mixtures. For pure liquids and for the consolute point

a phenomenological theory was developed by [13, 14]. For pure fluids a basis
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for the phenomenological theory was given in [15] by the extension of model H

and in [10, 12, 16] a non-asymptotic RGT was formulated and compared with

experiments (for a recent asymptotic calculation see [17]). So far no theoretical

basis by RGT was presented for the consolute point and no theoretical results

were available for the plait point [18]. Our non-asymptotic results for the critical

sound propagation in all cases involve besides thermodynamic quantities, the

dynamic parameters determined from other TCs. The static coupling constant of

the sound degrees of freedom to the order parameter is found to be the logarithmic

derivative of an appropriate weakly diverging compressibility in all cases and has

the property to decrease to zero approaching the background.

2. CRITICAL DYNAMICS OF MIXTURES

2.1. The Model Equations

The critical dynamics of a mixture is described by the equations of motion

for the entropy densities σ(x), the local concentration c(x) and the transverse

momentum current jt(x). If the sound propagation should also be described we

have to add the equations for the mass density ρ(x) and the longitudinal mo-

mentum current jl(x). At the consolute point the local concentration constitutes

the order parameter density and we choose as densities φ, q1, q2 as the linear

combination of the fluctuations 4c(x), 4σ(x) and 4ρ(x)

φ(x) =
√
NA(4c(x)− 〈4c(x)〉)

q1(x) =
√
NA

4σ(x)−

(
∂σ

∂c

)
T,P

(4c(x)− 〈4c(x)〉)

 (1)

q2(x) =
√
NA

4ρ(x) −

(
∂ρ

∂c

)
T,P

(4c(x)− 〈4c(x)〉)
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whereas at the plait point and at the critical point in pure fluids the entropy

density constitutes the order parameter and the densities read accordingly

φ(x) =
√
NA(4σ(x)− 〈4σ(x)〉)

q1(x) =
√
NA

4c(x)−

(
∂c

∂σ

)
∆,P

(4σ(x)− 〈4σ(x)〉)

 (2)

q2(x) =
√
NA

4ρ(x)−

(
∂ρ

∂σ

)
∆,P

(4σ(x)− 〈4σ(x)〉)


q1 terms are to be skipped for pure fluids. Statics is described by the Hamiltonian

H =
∫
ddx

1

2

{
τφ2(x) + (∇φ(x))2 + a11q

2
1(x) + a22q

2
2(x) + 2a12q1(x)q2(x) (3)

+ ajj
2(x) +

ũ

12
φ4(x) + γ1q1(x)φ2(x) + γ2q2(x)φ2(x)− 2h1q1(x)− 2h2q2(x)

}

leading to strong and weak diverging thermodynamic derivatives (the ai,j are

thermodynamic background values) which are in the case of the consolute point

〈φ φ〉c =
RT

ρ

(
∂c

∂∆

)
T,P

〈q1 q1〉c =
RT

ρ

(
∂σ

∂T

)
c,P

(4)

〈q2 q2〉c = RTρ

(
∂ρ

∂P

)
T,c

〈q1 q2〉c = RTρ

(
∂σ

∂P

)
T,c

=
RT

ρ

(
∂ρ

∂T

)
c,P

(5)

and in the case of a plait point

〈φ φ〉c =
RT

ρ

(
∂σ

∂T

)
∆,P

〈q1 q1〉c =
RT

ρ

(
∂c

∂∆

)
σ,P

(6)

〈q2 q2〉c = RTρ

(
∂ρ

∂P

)
σ,∆

〈q1 q2〉c = RTρ

(
∂c

∂P

)
σ,∆

=
RT

ρ

(
∂ρ

∂∆

)
σ,P

(7)

The appropriate dynamic equations are an extension of model H’ [9, 2]

∂φ

∂t
= Γ∇2 δH

δφ
+ L∇2δH

δq1

+ Lφ∇
2δH

δq2

− g(∇φ)
δH

δj
+ Θφ (8)

∂q1

∂t
= L∇2 δH

δφ
+ µ∇2δH

δq1
+ L12∇

2 δH

δq2
− g(∇q1)

δH

δj
+ Θ1 (9)
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∂q2

∂t
= Lφ∇

2δH

δφ
+ L12∇

2 δH

δq1
+ λ∇2 δH

δq2
− c2∇

δH

δj
− g∇

(
q2
δH

δj

)

− g`φ∇
δH

δj
+ Θ2 (10)

∂jl
∂t

= λl∇
2δH

δjl
− c2∇

δH

δq2
− g`∇

(
φ
δH

δq2

)
+ (1− T )g

{
(∇φ)

δH

δφ
(11)

+ (∇q1)
δH

δq1
− q2∇

δH

δq2

}
− g(1− T )

{∑
k

[
jk∇

δH

δjk
−∇kj

δH

δjk

]}
+ Θl

∂jt
∂t

= λt∇
2 δH

δjt
+ T g

{
(∇φ)

δH

δφ
+ (∇q1)

δH

δq1
− q2∇

δH

δq2

}

− gT

{∑
k

[
jk∇

δH

δjk
−∇kj

δH

δjk

]}
+ Θt (12)

There are now three model OCs according to the modes of mass diffusion, heat

diffusion and the OCs for the corresponding cross phenomena. All other OCs in

the equation are related to these [2]. The mode couplings g, g` give rise to critical

effects in the OCs and the deviation from van Hove theory. The fluctuating forces

Θi are Gaussian distributed and fulfill the usual Einstein relations.

We define suitable dynamical parameters, a diffusion rate ratio w and the

mode coupling f

w =
L
√

Γµ
, f =

g
√

Γλt
(13)

Only these two parameters besides Γ the order parameter OC enter the physical

expressions for the TCs because irrelevant parameters are neglected. First one

should note that the physical meaning of the model OCs depends on the definition

of the set of variables Equ. (1) or (2) and second that for the same reason the

dynamic parameters enter the TCs in different ways.

2.2. Universality
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In order to calculate the dynamical critical effects we apply RGT to this

model. The asymptotic singularities are determined already by the set of equa-

tions for φ, q1 and jt alone and it turns out that they are the same as those

obtained in the even simpler model H for the pure fluid [9]. Thus the dynamical

critical exponent z is the same as for pure fluids z = 4 − xλ − η ∼ 3, where

the nontrivial exponent xλ is calculated from the renormalization of the order

parameter OC and η is the static critical exponent of the correlations at Tc. This

establishes universality at critical points in fluids although for mixtures an addi-

tional dynamical parameter w appears. However the fixed point value for w is

w? = 0 and that of the mode coupling f is the same as found for pure fluids. The

transient exponent of w is related by ωw = 1
2
xλ to the pure fluid critical expo-

nent xλ. The exponent of the shear viscosity is xη = 1− xλ − η in all cases. In

consequence appropriate defined dynamical amplitude ratios, e.g. the Kawasaki

amplitude, have the same asymptotic values at the different critical points.

In the non-asymptotic region the model parameters are different from their

fixed point values and depend (i) on the distance from the critical point and

(ii) on the specific fluid considered. The dependence of the parameters on the

distance from the critical point is described within RGT by flow equations with

the values of the parameters in the background as initial conditions. These have

to be found by comparing the theoretical expressions for one or two TCs with

experiment.

3. TEMPERATURE DEPENDENCE OF THE TRANSPORT COEF-

FICIENTS
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The expressions of the TCs are obtained by comparing the dispersion of the

hydrodynamic modes calculated from the model equations above with those from

the hydrodynamic equations for a mixture [19]

∂σ

∂t
=

DkT
T

kT
T

(
∂∆

∂c

)
T,P

−

(
∂∆

∂T

)
c,P

+
κ

ρT

∇2T

+ D

kT
T

(
∂∆

∂c

)
T,P

−

(
∂∆

∂T

)
c,P

∇2c (14)

∂c

∂t
=
DkT

T
∇2T +D∇2c

∂jt
∂t

=
η

ρ
∇2jt (15)

∂ρ(x, t)

∂t
+ ∇j′l(x, t) = 0 , (16)

∂j′l(x, t)

∂t
+ ∇P (x, t)−

1

ρ

(
ζ +

4

3
η̄
)
∇(∇j′l(x, t)) = 0 . (17)

In this way relations between the model vertex functions and the hydrodynamic

TCs are established. The vertex function are expressed by thermodynamic quan-

tities (the static vertex functions) and the dynamic parameters.

3.1. Mixtures Near a Consolute Point

Let us consider as an example of this procedure a mixture near the consolute

point. From the structure of the dynamic model a non perturbative relation

between the mass diffusion D and the thermal diffusion ratio kT is obtained.

The thermal diffusion ratio is exactly the inverse of the mass diffusion over the

whole temperature region from asymptotics to the background (R is here the gas

constant)

kT (t) =
ρL

RD(t)
. (18)

This has been verified in [20] for aniline-cyclohexane up to values of t ∼ 10−2, but

it would be worthwhile to prove this for larger values of t. In passing we mention
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that such an simple exact relation does not hold near plait points. There it is

fulfilled only in the asymptotic region [2].

Inserting for the vertex functions calculated in one loop order we obtain the

final results for the TC’s namely the mass diffusion

D(t) = ξ(t)−2Γ(t)
(

1−
1

16
f2(t)

)
(19)

the shear viscosity

η̄(t) =
kBT

4π
ξ(t)

1− 1
36

f2(t)
1−w2(t)

Γ(t)f2(t)
(20)

and the thermal conductivity

κ(t)

ρT
=

ρ

RT
µ(1−

w2(t)

1− 1
16
f2(t)

) . (21)

with

dΓ

dt
=

d ln ξ(t)

dt

3

4
Γf2 ,

dw

dt
= −

d ln ξ(t)

dt

3

8
wf2

df

dt
=

d ln ξ(t)

dt

1

2
f(1−

3

4
f2 −

1

24

f2

1− w2
) . (22)

Thus the critical enhancement of the thermal conductivity is directly related to

the temperature dependence of the parameter w(t).

The general procedure is now to determine the initial parameters of the flow

equations Eqs (22) by comparing with one or two TCs in a certain temperature

region. We use the shear viscosity (20), but one has to keep in mind that the

thermal conductivity (21) is most sensitive to the flow of w and would be the most

sensitive experimental quantity to be fitted in order to find w(t0). Unfortunately

no such data are usually available and therefore the shear viscosity serves for the

determination of all three initial parameters Γ(t0), f(t0) and w(t0).
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The mixture 2-butoxyethanol-Water is an exceptional case. First the corre-

lation length data extend into the background region and all three TCs have been

measured [3]. We have performed fits of the shear viscosity corrected for the reg-

ular temperature behavior. In the background the uncorrected shear viscosity is

increasing since we approach Tc from below. The corrected data lead to a nonzero

background value of the parameter w indicating already from a fit of the shear

viscosity alone, and predicts a critical enhancement of the thermal conductivity.

Here we include this enhancement in our fit procedure and the predict the mass

diffusion (see Figs (1, 2); aniline-cyclohexane has been analyzed in [10, 21].

3.2. Nonuniversal Kawasaki Amplitude

The experimentally defined Kawasaki amplitude [7] at the consolute point

and for pure fluids read

Rcons
exp =

6πηDξ

kBT
and Rpure

exp =
6πηDTξ

kBT
(23)

respectively. A more complicated expression applies for the plait point [2]. Insert-

ing the theoretical expressions we obtain the non-asymptotic amplitude (w ≡ 0

for pure fluids)

Rth =
3

2f2(t)

(
1−

1

16
f2(t)

)(
1−

1

36

f2(t)

1− w2(t)

)
(24)

Although the asymptotic value of the Kawasaki amplitude is R?
theor = 1.056 in

all cases, the non-asymptotic expression shows quite different crossover behavior.

For the consolute point its value is within 10% the asymptotic one (see Fig.2),

whereas for the vapor-liquid transitions it increases (since the mode coupling f

decreases) in the background [21]. This is connected to the different flow of the
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mode coupling at consolute points (almost the fixed point value) and gas-liquid

critical points (decreasing further away from Tc).

4. SOUND MODE

So far only the model H’ equations have been considered, now we include

the equations for the mass density and the longitudinal momentum current, i.e.

consider the whole set Eqs. (8)-(12). This enables us to calculate the critical

effects in the sound velocity cs and the sound attenuation αs

c2
s(t, ω) = <[C2

s(t, ω)− iωDs(t, ω)] αs(t, ω) = −
ω=[C2

s(t, ω)− iωDs(t, ω)]

2c3
s(t, ω)

.

(25)

We neglect the subleading terms Ds in the following, however these terms are im-

portant in order to reproduce the proper hydrodynamic result in the background.

The structure of Cs turns out to be the same for all critical points (it agrees also

with the formal expressions at the superfluid transition in 4He [22, 23])

C2
s(t, ω) = c2

s1 + c2
s2[t̄]

1 + γ2[t̄]F (s)
+

(
u[t̄]

)
1 + γ2[t̄]F+

(
v[t, t̄], w[t̄]

) (26)

with t̄(t, ω) found from the matching condition below. The sound velocity at

zero frequency reads c2
s(t, 0) = c2

s1 + c2
s2, and only c2

s2 contains the singular part

proportional to t̄α. For pure fluids we have c2
s1 = 0 and c2

s2 =
(
∂P
∂ρ

)
σ
. For

mixtures cs1 and cs2, containing Tc-line derivatives, depend on wether we are

near a consolute or a plait point. For the consolute point we obtain with c2
s2 ∼(

∂P
∂ρ

)
T,c

the structure of the ansatz of the phenomenological theory of Ferrell and

Bhattacharjee [13, 14] and the scaling properties agree with those mentioned by

[24]. For the plait point cs2 ∼
(
∂P
∂ρ

)
σ,∆

(∆ is the difference in chemical potential
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of the mixture components) and the same asymptotic scaling behavior as at the

consolute point is obtained. However the non-asymptotic behavior might be

different.

The static coupling γ between the order parameter and the sound mode

degrees of freedom is related to the logarithmic derivatives of the singular part

of the sound velocity and may be approximated by

γ2(t̄) =
2

ν

d ln cs2(t̄)

d ln t̄
(27)

In the asymptotic limit it takes its fixed point value γ?2 = 2α
ν
.

The function F+ is an amplitude function, related to the so called ’frequency

dependent specific heat’(although we would not use such a name at the plait

point, where it is more a concentration susceptibility), which can be calculated

within the simpler model H and reads

F+(v, w) = −
1

4

{
v2

v+v−
ln v +

1

v+ − v−

[v2
−

v+
lnv− −

v2
+

v−
ln v+

]}
(28)

with

v± =
v

2
±

√√√√(v)

2

)2

+ iw̄ (29)

The parameters v and w̄ are

v[t, t̄] =
ξ−2(t)

ξ−2[t̄]
, w̄[t̄] =

ω

2Γeff [t̄]ξ−4[t̄]
(30)

The temperature distance t and the frequency ω enter also via the effective tem-

perature distance t̄, which is finite at finite frequency in the limit t = 0 by the

matching condition

t8ν +

(
2ξ4

0ω

Γeff [t̄(t, ω)]

)2

= t̄8ν(t, ω) (31)
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The effective OC of the order parameter, which appears in the frequency variable

w̄ and the matching condition, contains for the mixtures the dynamic parameter

w, Γeff = Γ (1− w2). The effect of w is to increase the region of validity of the

asymptotic power law behavior of Γ(t) see eg. the dashed curve in Fig. 2.

4.2. Pure Fluids

At Tc the attenuation in one wavelength αs×λ in pure fluids reaches a finite

universal value for small frequencies, whereas in mixtures it goes to zero like

ωα/zν . However one should be cautious in applying the asymptotic results in the

experimental regime because of non-asymptotic effects in the various couplings

and/or static quantities involved (see eg. for the consolute point [25]). In pure

fluids at finite but small frequencies a nonuniversal value of the attenuation in

one wave length is observed and this value was related to the non-asymptotic

behavior of the specific heat CV (t) by Bhattacharjee and Ferrell [13]. In our

theory this effect is of the same physical origin and related to the non-asymptotic

behavior of the static coupling γ2 shown in Fig.3. From Eq.(26) we calculate the

ratio of the attenuation in one wavelength at finite frequency to the value at zero

frequency at Tc

α× λ

(α × λ)c
=
γ2
q (x)

γ?2q

1 +
γ?2q
4

ln 2

1 +
γ2
q (x)

4
ln 2

(32)

where x = (2ξ4
0ω/Γas)

1/zν
is the effective temperature distance at finite frequency.

Fig.3 shows our result in comparison to the experimental values given in [13].

Near Tc the specific heat or compressibility might be fitted by an expression in-

cluding Wegner corrections to the asymptotic power law, CV ∼ t−α(1+gt∆) with

∆ = 0.5. Then it is seen that the existence of a maximum in the attenuation
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in one wavelength depends on the sign of g. For a negative amplitude, a max-

imum is predicted, whereas for a positive amplitude the attenuation decreases

monotonically to zero in the background (large frequencies), when the specific

heat reaches its constant positive background value. Thus our result produces

the expected [13] behavior in the background region for large frequencies (large

x). A extensive comparison of the sound velocity and attenuation for various

fluids can be found in [12], here we show three examples for the attenuation in

3He [26], 4He [27] and Xe [28] in Fig. 4 including all non-asymptotic effects of

static and dynamic origin.
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Figure Captions

Fig. 1. Comparison of theory with 2-Butoxyethanol-Water data (see text

for the Refs.). Fit of the correlation lenght ξ of the shear viscosity η and the

thermal conductivity κ and our prediction for the mass diffusivity DT compared

with the experimental data.

Fig. 2. Dynamic parameters f and w, Onsager coefficients Γ (solid curve),

Γeff (dashed curve) and Kawasaki amplitude R for 2-Butoxyethanol-Water as

function of temperature distance t from Tc.

Fig. 3. Normalized attenuation in one wavelength at Tc as function of scaled

frequency x.

Fig. 4. Adjusted attenuation as function of the temperature distance from

Tc at various frequencies in different liquids. The value of the attenuation is

adjusted to one for each liquid at the lowest frequency and smallest temperature

distance t from Tc.
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